IDM Alto Adige Via A. Volta, 13 39100 Bolzano Italy

EXPERT REPORT

"Leneco Vollholzelement"

Trento, 18/04/2019

Dr. Eng. Mauro Andreolli

Man Adlh

Table of contents

1.	Introduct	ion	4
2.	Verificati	on of the essential characteristics of the construction product (Basic Works Requirement 1).	6
2	2.1. Meo	chanical resistance and stiffness regarding mechanical actions perpendicular to the element.	6
	2.1.1.	Bending (EAD 130323-00-0304 §1.1.2)	6
	2.1.2.	Shear (EAD 130323-00-0304 §1.1.4)	10
	2.1.3.	Point loads (EAD 130323-00-0304 §1.1.5)	12
	2.1.4.	Hardwood dowels (EAD 130323-00-0304 §1.1.1)	14
2	2.2. Meo	chanical resistance and stiffness regarding mechanical actions in-plane of the element	16
	2.2.1.	Shear (contribution of hardwood dowels - EAD 130323-00-0304 §1.2.2)	16
	2.2.2.	Shear walls (EAD 130323-00-0304 §1.2.4)	18
3.	Product	characteristics of the "Leneco Vollholzelement"	22
4.	Summar	у	. 24

1. Introduction

An application has been made for an ETA (European Technical Assessment) for "Leneco Vollholzelement", which is a prefabricated timber element, consisting of milled rectangular boards made of softwood joined with hardwood dowels.

Leneco elements can consist of all continuous boards or both continuous and non-continuous boards.

Leneco elements are intended to be used as structural or non-structural elements in buildings and timber structures, e.g. as walls, floor or roof elements in service classes 1 and 2 according to EN 1995-1-1.

This Expert Report includes an evaluation of the test data provided in order to assess the relevant characteristics of the structural product.

The following documents are used as a basis for this report:

- Test Report n. 52/01/2018 "Tests to determine some physical and mechanical properties of hard wood dowels", CNR Ivalsa, Istituto per la Valorizzazione del Legno e delle Specie Arboree, San Michele (TN), 04/03/2019
- Test Report n. 31/01/2018 "Tests to determine some physical and mechanical properties of only-timber panels Leneco Vollholzelement", CNR Ivalsa, Istituto per la Valorizzazione del Legno e delle Specie Arboree, San Michele (TN), 05/03/2019
- Test Report n. 31/01/2018, Technical Annexes n°1, "Cyclic test on only-timber panels Leneco Vollholzelement", CNR Ivalsa, Istituto per la Valorizzazione del Legno e delle Specie Arboree, San Michele (TN), 05/03/2019
- Test Report n. 31/02/2018 "Tests to determine some physical and mechanical properties of only-timber panels Leneco Vollholzelement", CNR Ivalsa, Istituto per la Valorizzazione del Legno e delle Specie Arboree, San Michele (TN), 05/03/2019
- Test Report n. 31/02/2018, Technical Annexes n°1, "Cyclic test on only-timber panels Leneco Vollholzelement", CNR Ivalsa, Istituto per la Valorizzazione del Legno e delle Specie Arboree, San Michele (TN), 05/03/2019
- Test Report n. 43/01/2018 "Test for the determination of mechanical properties of n° 4 onlywood wall element Leneco Vollholzelement", CNR Ivalsa, Istituto per la Valorizzazione del Legno e delle Specie Arboree, San Michele (TN), 08/03/2019

- Test Report n. 31/03/2018 "Test for the determination of mechanical properties of n° 4 onlywood wall element Leneco Vollholzelement", CNR Ivalsa, Istituto per la Valorizzazione del Legno e delle Specie Arboree, San Michele (TN), 06/03/2019
- EAD 130323-00-0304 "Prüfprogramm für "Leneco Vollholzelement" der Firma LenEco GmbH, Vorgefertigte Holzbauelemente - Elemente aus gefrästen Nadelholzelementen für tragende Bauteile in Gebäuden"

The methods and criteria used for assessing the performance of the solid wood element in relation to the requirements for mechanical resistance and stability are provided in EAD 130323-00-0304.

2. Verification of the essential characteristics of the construction product (Basic Works Requirement 1)

2.1. Mechanical resistance and stiffness regarding mechanical actions perpendicular to the element

2.1.1. Bending (EAD 130323-00-0304 §1.1.2)

4-point bending tests according to EN 408:2012 have been performed on "Leneco Vollholzelement" in flatwise configuration.

Four geometrical configurations were tested:

- 15 samples with thickness 130 mm, width 600 mm, length 2900 mm and span of 2700 mm:
 - o all samples were continuous elements
- 15 samples with thickness 200 mm, width 600 mm, length 4900 mm and span of 4100 mm:
 - o 8 samples were non-continuous elements
 - o 7 samples were continuous elements

The procedure of EN 408 for the determination of the local modulus of elasticity in bending has been applied.

$$E_0 = \frac{a \cdot l_1^2 \cdot (F_2 - F_1)}{16 \cdot I \cdot (w_{2,local} - w_{1,local})}$$

Where:

a is the distance between a loading position and the nearest support, in mm

- I_1 is the gauge length for the determination of the modulus of elasticity, in mm
- *I* is the second moment of area, in mm⁴

The results are given in Table 1. The following values are specified:

- *h* = Depth of the element cross-section, in mm
- *b* = Width of the element cross section, in mm
- F_i = Load equal to 0.2 and 0.3 of the maximum load at failure, in kN
- $w_{i, local}$ = Local deformation corresponding to F_{i} , in mm
- E_0 = Modulus of elasticity parallel to the grain of the boards, in MPa

Configuration 130 x 600 mm, Supports distance: 2700 mm, Continuous elements						
h	b	F1	F ₂	W _{1, local}	W _{2, local}	E₀
[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[MPa]
131.9	601.7	13.74	20.62	0.32	0.50	8229
131.8	602.3	12.78	19.14	0.33	0.48	9658
130.8	603.7	15.78	23.72	0.35	0.53	9778
131.5	597.7	15.58	23.38	0.35	0.52	9969
131.1	600.3	16.04	24.04	0.46	0.69	7890
131.3	601.7	15.64	23.54	0.39	0.60	8563
131.0	601.0	15.10	22.58	0.39	0.58	8912
130.6	600.7	13.30	19.88	0.37	0.55	8255
130.5	600.7	12.58	18.92	0.32	0.48	8897
131.3	598.3	13.86	20.80	0.42	0.64	7281
131.1	597.7	12.38	18.58	0.35	0.52	8220
131.8	599.0	14.14	21.22	0.40	0.61	7615
130.9	597.7	14.00	21.06	0.42	0.63	7488
131.0	599.0	14.52	21.74	0.39	0.60	7966
131.9	599.7	13.64	20.46	0.44	0.69	6145
	Sa	imple mean val	ue	I	E _{0,mean} [MPa]	8324
Config	guration 200 x	600 mm, Suppo	orts distance: 4	100 mm, Non-c	continuous eleme	ents
h	b	F1	F ₂	W _{1, local}	W _{2, local}	E₀
[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[MPa]
195.4	608.7	21.72	32.62	0.60	0.95	7607
196.0	611.3	18.62	28.00	0.58	0.97	5778
195.5	613.7	23.28	34.92	0.67	1.05	7282
195.8	610.7	23.00	34.50	0.60	0.95	7775
195.9	608.7	10.00				
195 1	000.7	18.68	28.08	0.61	0.96	6452
100.1	612.7	18.68	28.08 28.02	0.61 0.78	0.96 1.17	6452 5748
194.8	612.7 613.7	18.68 18.68 16.56	28.08 28.02 24.84	0.61 0.78 0.51	0.96 1.17 0.78	6452 5748 7248
194.8 195.4	612.7 613.7 611.7	18.68 18.68 16.56 20.16	28.08 28.02 24.84 30.22	0.61 0.78 0.51 0.73	0.96 1.17 0.78 1.10	6452 5748 7248 6653
194.8 195.4	612.7 613.7 611.7 S a	18.68 18.68 16.56 20.16 mple mean val	28.08 28.02 24.84 30.22 ue	0.61 0.78 0.51 0.73	0.96 1.17 0.78 1.10 Eo,mean [MPa]	6452 5748 7248 6653 6818
194.8 195.4	612.7 613.7 611.7 Sa	18.68 18.68 16.56 20.16 mple mean val x 600 mm, Sup	28.08 28.02 24.84 30.22 ue ports distance	0.61 0.78 0.51 0.73	0.96 1.17 0.78 1.10 E _{0,mean} [MPa]	6452 5748 7248 6653 6818 ts
194.8 195.4 Con	612.7 613.7 611.7 Sa figuration 200 b	18.68 18.68 20.16 mple mean val <i>x 600 mm, Sup</i>	28.08 28.02 24.84 30.22 ue ports distance. F ₂	0.61 0.78 0.51 0.73 : 4100 mm, Cor W _{1, local}	0.96 1.17 0.78 1.10 E _{0,mean} [MPa] ntinuous element W _{2, local}	6452 5748 7248 6653 6818 ts E₀
194.8 195.4 Con h [mm]	612.7 613.7 611.7 Sa figuration 200 b [mm]	18.68 18.68 20.16 mple mean val x 600 mm, Sup F ₁ [kN]	28.08 28.02 24.84 30.22 ue ports distance. F ₂ [kN]	0.61 0.78 0.51 0.73 : 4100 mm, Cor W _{1, local} [mm]	0.96 1.17 0.78 1.10 Eo,mean [MPa] ntinuous element W _{2, local} [mm]	6452 5748 7248 6653 6818 ts E₀ [MPa]
194.8 195.4 Con h [mm] 195.4	612.7 613.7 611.7 Sa figuration 200 b [mm] 607.3	18.68 18.68 20.16 mple mean val x 600 mm, Sup F ₁ [kN] 19.30	28.08 28.02 24.84 30.22 ue ports distance F ₂ [kN] 28.98	0.61 0.78 0.51 0.73 : 4100 mm, Cor W _{1, local} [mm] 0.67	0.96 1.17 0.78 1.10 E _{0,mean} [MPa] ntinuous element W _{2, local} [mm] 1.06	6452 5748 7248 6653 6818 ts E₀ [MPa] 6061
194.8 195.4 Con h [mm] 195.4 195.0	612.7 613.7 611.7 Sa figuration 200 b [mm] 607.3 607.7	18.68 18.68 20.16 mple mean val x 600 mm, Sup F ₁ [kN] 19.30 18.92	28.08 28.02 24.84 30.22 ue ports distance. F ₂ [kN] 28.98 28.46	0.61 0.78 0.51 0.73 : 4100 mm, Cor W _{1, local} [mm] 0.67 0.65	0.96 1.17 0.78 1.10 E _{0,mean} [MPa] mtinuous element W _{2, local} [mm] 1.06 1.03	6452 5748 7248 6653 6818 ts E₀ [MPa] 6061 6049
194.8 195.4 Con h [mm] 195.4 195.0 194.4	612.7 613.7 611.7 Sa figuration 200 b [mm] 607.3 607.7 609.3	18.68 18.68 20.16 mple mean val x 600 mm, Sup F1 [kN] 19.30 18.92 24.18	28.08 28.02 24.84 30.22 ue ports distance. F ₂ [kN] 28.98 28.46 36.30	0.61 0.78 0.51 0.73 : 4100 mm, Cor W _{1, local} [mm] 0.67 0.65 0.69	0.96 1.17 0.78 1.10 E _{0,mean} [MPa] ntinuous element W _{2, local} [mm] 1.06 1.03 1.07	6452 5748 7248 6653 6818 ts E₀ [MPa] 6061 6049 7835

	Sa	E _{0,mean} [MPa]	6553			
194.5	609.7	22.24	33.40	0.66	1.03	7380
194.7	610.0	19.80	29.70	0.68	1.06	6308
195.3	611.3	19.98	29.96	0.87	1.39	4696

Table 1: Modulus of elasticity, tests results

Proposal for the requirement in the ETA

For the design of the "Leneco Vollholzelement" in flatwise bending according to EN 1995-1-1, the following moduli of elasticity parallel to the grain of the boards may be assumed:

• continuous elements:

<i>h</i> = 130 mm	$E_{0,mean} = 8300 \text{ MPa}$
<i>h</i> = 200 mm	<i>E</i> _{0,mean} = 6500 MPa

linear interpolation between 130 mm \leq h \leq 200 mm may be applied;

• non-continuous elements:

$$h = 200 \text{ mm}$$
 $E_{0,mean} = 6500 \text{ MPa}$

For the design of bending members with the above-proposed moduli of elasticity parallel to the grain, the gross cross-section inertial properties may be used neglecting the presence of the milling and of the holes due to the hardwood dowels.

The bending stress σ_m has been calculated from the ultimate moment by considering the gross area of the Leneco element cross-sections.

The results are given in Table 2. The following values are specified:

- F_u = Total load at failure, in kN
- M_u = Ultimate bending moment, in kNm
- W_{gross} = Elastic gross section modulus, in mm³
- σ_m = Bending normal stress at failure, in MPa

Configuration 130 x 600 mm, Supports distance: 2700 mm, Continuous elements				
Fu	Mu	Wgross	σ _m	
[kN]	[kNm]	[mm³]	[MPa]	
68.70	32.98	1743536	18.91	
63.78	30.61	1743438	17.56	
79.02	37.93	1721582	22.03	
77.78	37.33	1723374	21.66	
80.34	38.56	1719151	22.43	
78.44	37.65	1727792	21.79	
75.26	36.12	1718435	21.02	
66.38	31.86	1707357	18.66	
63.04	30.26	1704046	17.76	
69.34	33.28	1719267	19.36	
61.90	29.71	1712472	17.35	
70.78	33.97	1734141	19.59	
70.10	33.65	1706209	19.72	
72.52	34.81	1713589	20.31	
68.20	32.74	1738882	18.83	
Sample mean value (Log-normal dist.)		ӯ [MPa]	19.73	
Characteristic value (Log-normal dist.)		f _{m,k} [MPa]	16.67	
Configuration 200	x 600 mm, Supports dista	ance: 4100 mm, Non-conti	nuous elements	
Fu	Mu	Wgross	σ _m	
[kN]	[kNm]	[mm³]	[MPa]	
108.71	79.63	3871945	20.57	
02.20				
93.30	68.34	3914164	17.46	
116.55	68.34 85.37	3914164 3910415	17.46 21.83	
93.30 116.55 114.92	68.34 85.37 84.18	3914164 3910415 3900591	17.46 21.83 21.58	
93.30 116.55 114.92 93.47	68.34 85.37 84.18 68.47	3914164 3910415 3900591 3891789	17.46 21.83 21.58 17.59	
93.30 116.55 114.92 93.47 93.40	68.34 85.37 84.18 68.47 68.42	3914164 3910415 3900591 3891789 3888087	17.46 21.83 21.58 17.59 17.60	
93.30 116.55 114.92 93.47 93.40 82.71	68.34 85.37 84.18 68.47 68.42 60.59	3914164 3910415 3900591 3891789 3888087 3882467	17.46 21.83 21.58 17.59 17.60 15.60	
93.30 116.55 114.92 93.47 93.40 82.71 100.70	68.34 85.37 84.18 68.47 68.42 60.59 73.76	3914164 3910415 3900591 3891789 3888087 3882467 3892357	17.46 21.83 21.58 17.59 17.60 15.60 18.95	
93.30 116.55 114.92 93.47 93.40 82.71 100.70 Sample mean value	68.34 85.37 84.18 68.47 68.42 60.59 73.76 e (Log-normal dist.)	3914164 3910415 3900591 3891789 3888087 3882467 3892357 ÿ [MPa]	17.46 21.83 21.58 17.59 17.60 15.60 18.95 18.78	
93.30 116.55 114.92 93.47 93.40 82.71 100.70 Sample mean value Characteristic value	68.34 85.37 84.18 68.47 68.42 60.59 73.76 e (Log-normal dist.) e (Log-normal dist.)	3914164 3910415 3900591 3891789 3888087 3882467 3892357 ÿ [MPa] f _{m,k} [MPa]	17.46 21.83 21.58 17.59 17.60 15.60 18.95 18.78 14.50	
93.30 116.55 114.92 93.47 93.40 82.71 100.70 Sample mean value Characteristic value Configuration 2	68.34 85.37 84.18 68.47 68.42 60.59 73.76 e (Log-normal dist.) e (Log-normal dist.) 00 x 600 mm, Supports di	3914164 3910415 3900591 3891789 3888087 3882467 3892357 ỹ [MPa] f _{m,k} [MPa] stance: 4100 mm, Continu	17.46 21.83 21.58 17.59 17.60 15.60 18.95 18.78 14.50 ous elements	
93.30 116.55 114.92 93.47 93.40 82.71 100.70 Sample mean value Characteristic value Characteristic value Configuration 2 Fu	68.34 85.37 84.18 68.47 68.42 60.59 73.76 e (Log-normal dist.) e (Log-normal dist.) 00 x 600 mm, Supports dis Mu	3914164 3910415 3900591 3891789 3888087 3882467 3892357 ỹ [MPa] f _{m,k} [MPa] stance: 4100 mm, Continu Wgross	17.46 21.83 21.58 17.59 17.60 15.60 18.95 18.78 14.50 ous elements	
93.30 116.55 114.92 93.47 93.40 82.71 100.70 Sample mean value Characteristic value Characteristic value Fu [kN]	68.34 85.37 84.18 68.47 68.42 60.59 73.76 e (Log-normal dist.) e (Log-normal dist.) 00 x 600 mm, Supports dis Mu [kNm]	3914164 3910415 3900591 3891789 3888087 3882467 3892357 ỹ [MPa] fm,k [MPa] stance: 4100 mm, Continu Wgross [mm ³]	17.46 21.83 21.58 17.59 17.60 15.60 18.95 18.78 14.50 ous elements Øm [MPa]	
93.30 116.55 114.92 93.47 93.40 82.71 100.70 Sample mean value Characteristic value Characteristic value Fu [kN] 96.60	68.34 85.37 84.18 68.47 68.42 60.59 73.76 e (Log-normal dist.) e (Log-normal dist.) 00 x 600 mm, Supports dis Mu [kNm] 70.76	3914164 3910415 3900591 3891789 3888087 3882467 3892357 ỹ [MPa] f _{m,k} [MPa] stance: 4100 mm, Continu W _{gross} [mm ³] 3863463	17.46 21.83 21.58 17.59 17.60 15.60 18.95 18.78 14.50 ous elements Øm [MPa] 18.32	
93.30 116.55 114.92 93.47 93.40 82.71 100.70 Sample mean value Characteristic value Characteristic value Fu [kN] 96.60 94.83	68.34 85.37 84.18 68.47 68.42 60.59 73.76 e (Log-normal dist.) e (Log-normal dist.) 00 x 600 mm, Supports dis Mu [kNm] 70.76 69.46	3914164 3910415 3900591 3891789 3888087 3882467 3892357 ÿ [MPa] fm,k [MPa] stance: 4100 mm, Continu Wgross [mm ³] 3863463 3852404	17.46 21.83 21.58 17.59 17.60 15.60 18.95 18.78 14.50 ous elements Øm [MPa] 18.32 18.03	
93.30 116.55 114.92 93.47 93.40 82.71 100.70 Sample mean value Characteristic value Characteristic value Characteristic value Fu [kN] 96.60 94.83 121.03	68.34 85.37 84.18 68.47 68.42 60.59 73.76 e (Log-normal dist.) e (Log-normal dist.) 00 x 600 mm, Supports dis Mu [kNm] 70.76 69.46 88.65	3914164 3910415 3900591 3891789 3888087 3882467 3892357 ỹ [MPa] fm,k [MPa] stance: 4100 mm, Continu Wgross [mm ³] 3863463 3852404 3837923	17.46 21.83 21.58 17.59 17.60 15.60 18.95 18.78 14.50 ous elements Øm [MPa] 18.32 18.03 23.10	
93.30 116.55 114.92 93.47 93.40 82.71 100.70 Sample mean value Characteristic value Configuration 2 Fu [kN] 96.60 94.83 121.03 117.96	68.34 85.37 84.18 68.47 68.42 60.59 73.76 e (Log-normal dist.) e (Log-normal dist.) 00 x 600 mm, Supports dist.) 00 x 600 mm, Supports dist.) 00 x 600 mm, Supports dist.)	3914164 3910415 3900591 3891789 3888087 3882467 3892357 ý [MPa] fm,k [MPa] stance: 4100 mm, Continu Wgross [mm ³] 3863463 3852404 3837923 3738350	17.46 21.83 21.58 17.59 17.60 15.60 18.95 18.78 14.50 ous elements om [MPa] 18.32 18.03 23.10 23.11	

Characteristic value (Log-normal dist.)		f _{m,k} [MPa]	15.75
Sample mean valu	e (Log-normal dist.)	ӯ [MPa]	20.10
111.42	81.62	3844633	21.23
99.10	72.59	3855309	18.83

Table 2: Bending strength, tests results

Proposal for the requirement in the ETA

For the design of the "Leneco Vollholzelement" in flatwise bending according to EN 1995-1-1, the following characteristic bending strength values parallel to the grain of the boards may be assumed:

• continuous elements:

<i>h</i> = 130 mm	$f_{m,k}$ = 16.50 MPa
<i>h</i> = 200 mm	<i>f_{m,k}</i> = 15.50 MPa

linear interpolation between 130 mm \leq h \leq 200 mm may be applied;

• non-continuous elements:

$$h = 200 \text{ mm}$$
 $f_{m,k} = 14.50 \text{ MPa}$

For the design of bending members with the above-proposed characteristic strengths, the gross cross-section inertial properties may be used neglecting the presence of the milling and of the holes due to the hardwood dowels.

The k_h factor defined in section 3.2(3) of EN 1955-1-1 and the k_{sys} factor defined in section 6.6 of EN 1955-1-1 shall be always taken equal to 1.0.

2.1.2. Shear (EAD 130323-00-0304 §1.1.4)

Shear tests according to EN 408:2012 have been performed on "Leneco Vollholzelement" in flatwise configuration.

Two geometrical configurations were tested:

- 15 samples with thickness 130 mm, width 600 mm, length 3000 mm and span of 2800 mm;
 - o all samples were non-continuous elements
- 15 samples with thickness 200 mm, width 600 mm, length 3000 mm and span of 2800 mm:
 - o 8 samples were non-continuous elements
 - o 7 samples were continuous elements

The shear stress τ has been calculated from the ultimate shear force by considering the gross area of the "Leneco Vollholzelement" cross-sections.

The results are given in Table 3. The following values are specified:

- F_u = Total load at failure, in kN
- V_u = Ultimate shear, in kN
- A_{gross} = Area of the gross cross section, in mm²
- τ = Shear stress at failure, in MPa

Configuration 130 x 600 mm, Supports distance: 2800 mm, non-continuous elements				
Fu	Vu	Agross	τ	
[kN]	[kN]	[mm²]	[MPa]	
165.32	82.66	80055	1.55	
179.28	89.64	80529	1.67	
179.72	89.86	80703	1.67	
150.46	75.23	79024	1.43	
184.44	92.22	78537	1.76	
159.22	79.61	78034	1.53	
146.60	73.30	78646	1.40	
170.50	85.25	78948	1.62	
164.56	82.28	78707	1.57	
188.30	94.15	78454	1.80	
158.12	79.06	78569	1.51	
135.18	67.59	79843	1.27	
179.24	89.62	78927	1.70	
142.60	71.30	79353	1.35	
164.11	82.06	78947	1.56	
Sample mean value	e (Log-normal dist.)	ӯ [MPa]	1.55	
Characteristic value (Log-normal dist.)		f _{v,k} [MPa]	1.27	
Configuration 200	x 600 mm, Supports dista	nce: 2800 mm, non-contin	uous elements	
Fu	Vu	Agross	τ	
[kN]	[kN]	[mm²]	[MPa]	
226.34	113.17	119744	1.42	
247.32	123.66	120082	1.54	
251.10	125.55	120400	1.56	
227.72	113.86	119780	1.43	
245.21	122.61	119454	1.54	
204.90	102.45	119772	1.28	
207.62	103.81	120062	1.30	
218.74	109.37	119695	1.37	
Sample mean value	e (Log-normal dist.)	ӯ [MPa]	1.43	
Characteristic valu	e (Log-normal dist.)	f _{v,k} [MPa]	1.20	
Configuration 2	00 x 600 mm, Supports dis	stance: 2800 mm, continuc	ous elements	
Fu	Vu	Agross	τ	

[kN]	[kN]	[mm²]	[MPa]
225.52	112.76	120082	1.41
234.24	117.12	120013	1.46
245.10	122.55	120257	1.53
232.22	116.11	120137	1.45
234.77	117.39	119938	1.47
238.70	119.35	119715	1.50
254.93	127.47	119938	1.59
Sample mean value	e (Log-normal dist.)	ӯ [MPa]	1.49
Characteristic valu	e (Log-normal dist.)	f _{v,k} [MPa]	1.33

Table 3: Shear strength, tests results

Proposal for the requirement in the ETA

For the design of "Leneco Vollholzelement" in flatwise shear according to EN 1995-1-1 a shear strength of 1.20 MPa may be assumed.

For the design of shear members with the above-proposed characteristic strengths, the gross crosssection areal properties may be used neglecting the presence of the milling and of the holes due to the hardwood dowels.

The k_{cr} factor for solid wood provided in section 6.1.7(2) of EN 1995-1-1 shall be always taken equal to 1.0.

2.1.3. Point loads (EAD 130323-00-0304 §1.1.5)

Bending tests with point load have been performed on "Leneco Vollholzelement" in flatwise configuration, with the milled timber boards arranged upright and with their length parallel to the free span.

The tested configuration consists of a slab-like specimen with thickness 200 mm, width 600 mm, length 5200 mm and span 5000 mm built of timber elements with thickness 50 mm connected with transversal hardwood dowels (20 mm of diameter). 3 samples were tested under a point load applied through a circular steel plate (diameter 50 mm) in the middle of the tested element.

The measurements of reached loads and corresponding deformations in traverse direction are given in Table 4. The following values are specified:

F _i	= Load equal to 0.2 and 0.3 of the maximum load at failure, in kN
Wi, central	= Deformation in the central point of the specimen (at mid-span) corresponding to F_{i} , in mm
Wi, external	= Deformation in the external portion of the specimen (at mid-span) corresponding to F_{i} , in mm
W _{i,e} / W _{i,c}	= Ratio between external and central deformation corresponding to $F_{\text{i}},$ in $\%$

Configuration 200 x 600 mm, Supports distance: 5000 mm, point load						
	Fi	Wi, central	Wi, external		W i, e / W i, m	
	[kN]	[mm]	[mm]		[%]	
F1	10.00	10.39	9.43		90.74	
F2	15.00	15.99	14.51		90.74	
F1	9.48	10.89	9.96		91.48	
F2	14.22	16.31	14.98		91.84	
F ₁	10.04	12.16	11.08		91.08	
F2	15.06	18.28	16.69		91.33	
	F1 91.10 %					
		F ₂	91.30 %			

Table 4: Point load, tests results

The tests results show that the point load is effectively spread from the directly loaded lamellae to the external ones. The deflection of the external lamellae is, on average, greater than the 90% of the deflection of the lamellae in the middle of the slab specimen.

No failure of the hardwood dowels, meant for transmitting the load through the lamellae, has been reached.

The maximum width of the tested elements was 600 mm and the following proposal relies on this tested configuration.

Proposal for the requirement in the ETA

For the design of the "Leneco Vollholzelement" under concentrated loads, whose minimum dimension is at least 50 mm, the effective width b_{ef} of the element shall be taken as follows: on each side of the loading point, the portion of the effective width (measured perpendicular to the length of the lamellae) shall be equal to the minimum between the distance between the loading point and the edge of a single "Leneco Vollholzelement" (*a*) and 300 mm.

2.1.4. Hardwood dowels (EAD 130323-00-0304 §1.1.1)

3-point bending test have been performed on the hardwood dowels. The load was applied using a properly steel system able to center the load by the use of a cylinder placed exactly at the mid span of the specimen.

A single configuration was tested:

- 30 samples with nominal diameter 20 mm, length 600 mm and a span of 320 mm.

The results are given in Table 5. The following values are specified:

- \emptyset = Diameter of the element cross-section, in mm
- F_{max} = Maximum load at failure, in kN
- M_{max} = Maximum bending moment at failure, in kNm

Ø20 hardwood dowel, Supports distance: 320 mm				
Ø	F _{ma}	x	M _{max}	
[mm]	[kN]	[kNm]	
20.46	1.49	9	0.119	
19.99	1.18	3	0.094	
20.25	1.5	1	0.121	
20.22	1.33	3	0.106	
20.37	1.20	C	0.096	
20.35	1.37	7	0.110	
20.42	1.38	3	0.110	
20.29	1.60	6	0.133	
20.40	1.30	0	0.104	
20.27	1.68	3	0.134	
20.37	1.3	5	0.108	
20.11	1.50	0	0.120	
20.39	1.41	1	0.113	
19.97	1.04	4	0.083	
20.07	1.28	3	0.102	
20.18	1.29	9	0.103	
19.93	1.44	4	0.115	
20.11	1.44	4	0.115	
19.96	1.50	6	0.125	
19.77	1.42	2	0.114	
19.90	1.48	3	0.118	
20.11	1.35	5	0.108	
19.96	1.40	0	0.112	
19.93	1.52	2	0.122	
19.99	1.5	1	0.121	
19.99	1.54	4	0.123	
19.97	1.33	3	0.106	
20.18	1.17	7	0.094	
19.95	1.34	4	0.107	
20.05	1.42	2	0.114	
Sample mean value (Log-no	ormal dist.)	ӯ [kNm]	0.111	
Characteristic value (Log-n	ormal dist.)	M _k [kNm]	0.091	

Table 5: Hardwood dowels, tests results

The characteristic value of bending moment capacity of the tested hardwood dowels results to be equal to:

$$M_k = 0.091 \text{ kNm}$$

2.2. Mechanical resistance and stiffness regarding mechanical actions in-plane of the element

2.2.1. Shear (contribution of hardwood dowels - EAD 130323-00-0304 §1.2.2)

4-point bending tests according to EN 408:2012 have been performed on "Leneco Vollholzelement" in edgewise configuration made of layers of boards with their length parallel to the free span. Above and below these elements, centered on the dowels positions, were placed other three outer layers of non-continuous boards.

Two geometrical configurations were tested:

- 15 samples with height 450 mm (internal + outer layers), width 135 mm, length 3000 mm and span of 2800 mm, each layer consists of one continuous board, two dowels in each row, 500 mm spacing;
- 15 samples with height 450 mm (internal + outer layers), width 350 mm, length 3000 and span of 2800 mm, each layer consists of two continuous boards placed side by side, three dowels in each row, 500 mm spacing;

All the specimens were loaded at 300 mm from the supports in order to test the contribution of dowels in shear.

The equivalent bending stiffness of the tested configurations has been calculated according to the data of global deformation and the corresponding loading values. Afterward, the slip modulus of the hardwood dowels has been estimated by applying the mechanically jointed beam method proposed in EN 1995-1-1, Annex B.

The results regarding stiffness are given in Table 6. The following values are specified:

h	= Depth of the element cross section, in mm
b	= Width of the element cross section, in mm
Fi	= Load equal to 0.2 and 0.3 of the maximum load at failure, in kN
W i, global	= Global deformation corresponding to F_i , in mm
$EJ_{eff, \ global}$	= Stiffness of the element including the shear deformability of the dowels, in MPa
K _{ser}	= Slip modulus of the hardwood dowel in the tested configuration, in N/mm

Configu	iration 135 x	450 mm, Sup	ports distand	e: 2800 mm,	two dowels,	one board per	layer
h	b	F ₁	F ₂	W _{1, global}	W _{2, global}	EJ _{eff, global}	K _{ser}
[mm]	[mm]	[kN]	[kN]	[mm]	[mm]	[Nmm ²]	[N/mm]
462.3	132.8	11.68	17.52	10.77	18.36	1.19E+11	5745
461.3	132.0	10.98	16.50	11.88	19.83	1.07E+11	4716
456.3	130.8	9.98	14.98	9.60	15.93	1.28E+11	6750
455.3	130.3	11.96	17.96	13.24	21.96	1.10E+11	5016
456.7	131.5	14.26	21.36	15.96	27.03	9.94E+10	4012
453.0	131.0	9.40	14.14	9.59	17.06	1.02E+11	4302
455.3	130.3	9.36	14.00	9.87	16.10	1.19E+11	5918
458.7	131.6	15.51	21.76	16.36	25.66	1.08E+11	4776
458.3	131.5	14.48	21.74	19.19	27.40	1.43E+11	8486
456.3	131.3	11.62	17.42	13.55	22.33	1.05E+11	4557
456.7	131.5	11.08	16.62	12.65	20.63	1.09E+11	4851
456.3	131.3	9.88	14.80	11.75	19.58	1.00E+11	4070
455.3	130.8	10.08	15.12	11.68	19.28	1.08E+11	4767
458.7	131.2	11.01	16.47	7.97	26.11	4.71E+10	128
453.3	130.3	13.81	20.73	17.38	28.22	1.02E+11	4246
		Sample m	ean value			K _{ser} [N/mm]	4823
Configur	ation 350 x 4	50 mm, Supp	orts distance	e: 2800 mm, tl	hree dowels,	two boards pe	er layer
Configur h	ation 350 x 4 b	50 mm, Supp F1	orts distance F ₂	: 2800 mm, tl W _{1, global}	w _{2, global}	<i>two boards pe</i> EJ _{eff, global}	er layer K _{ser}
Configura h [mm]	ation 350 x 4 b [mm]	50 mm, Supp F₁ [kN]	orts distance F₂ [kN]	: 2800 mm, ti W _{1, global} [mm]	hree dowels, W _{2, global} [mm]	two boards pe EJ _{eff, global} [Nmm ²]	er layer K _{ser} [N/mm]
Configura h [mm] 461.0	ation 350 x 4 b [mm] 344.7	50 mm, Supp F1 [kN] 24.02	orts distance F2 [kN] 36.06	: 2800 mm, ti W _{1, global} [mm] 20.36	hree dowels, W _{2, global} [mm] 30.54	two boards pe EJ _{eff, global} [Nmm ²] 1.89E+11	Fr layer K _{ser} [N/mm] 3196
Configura h [mm] 461.0 463.3	ation 350 x 4 b [mm] 344.7 342.3	50 mm, Supp F1 [kN] 24.02 23.56	orts distance F2 [kN] 36.06 35.30	e: 2800 mm, th W _{1, global} [mm] 20.36 22.31	hree dowels, W _{2, global} [mm] 30.54 33.78	two boards pe EJ _{eff, global} [Nmm ²] 1.89E+11 1.60E+11	er layer K _{ser} [N/mm] 3196 1881
Configura h [mm] 461.0 463.3 464.0	ation 350 x 4 b [mm] 344.7 342.3 343.0	50 mm, Supp F1 [kN] 24.02 23.56 22.30	orts distance F2 [kN] 36.06 35.30 33.45	: 2800 mm, ti W _{1, global} [mm] 20.36 22.31 21.98	hree dowels, W _{2, global} [mm] 30.54 33.78 32.66	two boards per EJ _{eff, global} [Nmm ²] 1.89E+11 1.60E+11 1.75E+11	er layer K _{ser} [N/mm] 3196 1881 2536
Configura h [mm] 461.0 463.3 464.0 464.7	ation 350 x 4 b [mm] 344.7 342.3 343.0 340.0	50 mm, Supp F1 [kN] 24.02 23.56 22.30 23.14	orts distance F2 [kN] 36.06 35.30 33.45 34.58	: 2800 mm, ti W _{1, global} [mm] 20.36 22.31 21.98 21.70	hree dowels, W _{2, global} [mm] 30.54 33.78 32.66 32.06	two boards per EJ _{eff, global} [Nmm ²] 1.89E+11 1.60E+11 1.75E+11 1.71E+11	er layer K _{ser} [N/mm] 3196 1881 2536 2405
Configura h [mm] 461.0 463.3 464.0 464.7 465.7	ation 350 x 4 b [mm] 344.7 342.3 343.0 340.0 339.7	50 mm, Supp F1 [kN] 24.02 23.56 22.30 23.14 22.60	orts distance F2 [kN] 36.06 35.30 33.45 34.58 33.92	e: 2800 mm, th W _{1, global} [mm] 20.36 22.31 21.98 21.70 20.10	hree dowels, W _{2, global} [mm] 30.54 33.78 32.66 32.06 30.66	two boards per EJ _{eff, global} [Nmm ²] 1.89E+11 1.60E+11 1.75E+11 1.71E+11 1.70E+11	er layer K _{ser} [N/mm] 3196 1881 2536 2405 2371
Configura h [mm] 461.0 463.3 464.0 464.7 465.7 464.3	ation 350 x 4 b [mm] 344.7 342.3 343.0 340.0 339.7 341.7	50 mm, Supp F1 [kN] 24.02 23.56 22.30 23.14 22.60 24.40	orts distance F2 [kN] 36.06 35.30 33.45 34.58 33.92 36.58	2800 mm, ti W _{1, global} [mm] 20.36 22.31 21.98 21.70 20.10 20.36	hree dowels, W _{2, global} [mm] 30.54 33.78 32.66 32.06 30.66 30.94	two boards per EJeff, global [Nmm ²] 1.89E+11 1.60E+11 1.75E+11 1.71E+11 1.70E+11 1.89E+11	er layer K _{ser} [N/mm] 3196 1881 2536 2405 2371 3243
Configura h [mm] 461.0 463.3 464.0 464.7 465.7 464.3 461.7	ation 350 x 4 b [mm] 344.7 342.3 343.0 340.0 339.7 341.7 341.0	50 mm, Supp F1 [kN] 24.02 23.56 22.30 23.14 22.60 24.40 29.56	orts distance F2 [kN] 36.06 35.30 33.45 34.58 33.92 36.58 44.46	2800 mm, ti W _{1, global} [mm] 20.36 22.31 21.98 21.70 20.10 20.36 23.34	hree dowels, W _{2, global} [mm] 30.54 33.78 32.66 32.06 30.66 30.94 34.38	two boards per EJeff, global [Nmm ²] 1.89E+11 1.60E+11 1.75E+11 1.71E+11 1.70E+11 1.89E+11 2.15E+11	er layer K _{ser} [N/mm] 3196 1881 2536 2405 2371 3243 4564
Configura h [mm] 461.0 463.3 464.0 464.7 465.7 464.3 461.7 463.3	ation 350 x 4 b [mm] 344.7 342.3 343.0 340.0 339.7 341.7 341.0 340.7	50 mm, Supp F1 [kN] 24.02 23.56 22.30 23.14 22.60 24.40 29.56 19.12	orts distance F2 [kN] 36.06 35.30 33.45 34.58 33.92 36.58 44.46 28.68	2800 mm, ti W _{1, global} [mm] 20.36 22.31 21.98 21.70 20.10 20.36 23.34 17.12	hree dowels, W _{2, global} [mm] 30.54 33.78 32.66 32.06 30.66 30.66 30.94 34.38 25.74	two boards per EJeff, global [Nmm ²] 1.89E+11 1.60E+11 1.75E+11 1.71E+11 1.70E+11 1.89E+11 2.15E+11 1.78E+11	r layer K _{ser} [N/mm] 3196 1881 2536 2405 2371 3243 4564 2715
Configura h [mm] 461.0 463.3 464.0 464.7 465.7 464.3 461.7 463.3	ation 350 x 4 b [mm] 344.7 342.3 343.0 340.0 339.7 341.7 341.0 340.7 338.3	50 mm, Supp F1 [kN] 24.02 23.56 22.30 23.14 22.60 24.40 29.56 19.12 22.66	orts distance F2 [kN] 36.06 35.30 33.45 34.58 33.92 36.58 44.46 28.68 34.06	2800 mm, ti W _{1, global} [mm] 20.36 22.31 21.98 21.70 20.10 20.36 23.34 17.12 21.54	hree dowels, W _{2, global} [mm] 30.54 33.78 32.66 32.06 30.66 30.94 34.38 25.74 29.56	two boards per EJeff, global [Nmm ²] 1.89E+11 1.60E+11 1.75E+11 1.71E+11 1.70E+11 1.89E+11 2.15E+11 1.78E+11 2.42E+11	er layer K _{ser} [N/mm] 3196 1881 2536 2405 2371 3243 4564 2715 6116
Configura h [mm] 461.0 463.3 464.0 464.7 465.7 464.3 461.7 465.7 463.3 461.7 465.7 465.7 465.7	ation 350 x 4 b [mm] 344.7 342.3 343.0 340.0 339.7 341.7 341.7 341.0 340.7 338.3 340.7	50 mm, Supp F1 [kN] 24.02 23.56 22.30 23.14 22.60 24.40 29.56 19.12 22.66 23.35	orts distance F2 [kN] 36.06 35.30 33.45 34.58 33.92 36.58 44.46 28.68 34.06 34.95	2800 mm, ti W _{1, global} [mm] 20.36 22.31 21.98 21.70 20.10 20.36 23.34 17.12 21.54 19.33	hree dowels, W _{2, global} [mm] 30.54 33.78 32.66 32.06 30.66 30.94 34.38 25.74 29.56 29.47	two boards per EJeff, global [Nmm ²] 1.89E+11 1.60E+11 1.75E+11 1.71E+11 1.70E+11 1.89E+11 2.15E+11 1.78E+11 2.42E+11 1.86E+11	er layer K _{ser} [N/mm] 3196 1881 2536 2405 2371 3243 4564 2715 6116 3104
Configura h [mm] 461.0 463.3 464.0 464.7 465.7 464.3 461.7 465.7 465.7 465.7 465.7 465.7 463.3 465.7 463.3	ation 350 x 4 b [mm] 344.7 342.3 343.0 340.0 339.7 341.7 341.0 340.7 338.3 340.7 337.0	50 mm, Supp F1 [kN] 24.02 23.56 22.30 23.14 22.60 24.40 29.56 19.12 22.66 23.35 22.22	orts distance F2 [kN] 36.06 35.30 33.45 34.58 33.92 36.58 44.46 28.68 34.06 34.95 33.34	2800 mm, ti W _{1, global} [mm] 20.36 22.31 21.98 21.70 20.10 20.36 23.34 17.12 21.54 19.33 18.49	hree dowels, W _{2, global} [mm] 30.54 33.78 32.66 32.06 30.66 30.94 34.38 25.74 29.56 29.47 28.93	two boards per EJeff, global [Nmm ²] 1.89E+11 1.60E+11 1.75E+11 1.71E+11 1.70E+11 1.89E+11 2.15E+11 1.78E+11 2.42E+11 1.86E+11 1.69E+11	er layer K _{ser} [N/mm] 3196 1881 2536 2405 2371 3243 4564 2715 6116 3104 2382
Configura h [mm] 461.0 463.3 464.0 464.7 465.7 464.3 461.7 465.7 463.3 465.7 463.3 465.7 463.3 465.7 463.3	ation 350 x 4 b [mm] 344.7 342.3 343.0 340.0 339.7 341.7 341.0 340.7 338.3 340.7 338.3 340.7 337.0 337.0	50 mm, Supp F1 [kN] 24.02 23.56 22.30 23.14 22.60 24.40 29.56 19.12 22.66 23.35 22.22 21.90	orts distance F2 [kN] 36.06 35.30 33.45 34.58 33.92 36.58 44.46 28.68 34.06 34.95 33.34 32.76	2800 mm, ti W _{1, global} [mm] 20.36 22.31 21.98 21.70 20.10 20.36 23.34 17.12 21.54 19.33 18.49 23.10	hree dowels, W _{2, global} [mm] 30.54 33.78 32.66 32.06 30.66 30.94 34.38 25.74 29.56 29.47 28.93 33.52	two boards per EJeff, global [Nmm ²] 1.89E+11 1.60E+11 1.75E+11 1.75E+11 1.70E+11 1.70E+11 2.15E+11 1.78E+11 2.42E+11 1.86E+11 1.69E+11 1.64E+11	er layer K _{ser} [N/mm] 3196 1881 2536 2405 2371 3243 4564 2715 6116 3104 2382 2147
Configura h [mm] 461.0 463.3 464.0 464.7 465.7 464.3 461.7 463.3 464.3 465.7 463.3 461.7 463.3 465.7 463.3 465.7 463.3 465.7 463.3 465.7	ation 350 x 4 b [mm] 344.7 342.3 343.0 340.0 339.7 341.7 341.0 340.7 338.3 340.7 338.3 340.7 337.0 337.0 337.7 339.3	50 mm, Supp F1 [kN] 24.02 23.56 22.30 23.14 22.60 24.40 29.56 19.12 22.66 23.35 22.22 21.90 22.06	orts distance F2 [kN] 36.06 35.30 33.45 34.58 34.58 33.92 36.58 44.46 28.68 34.06 34.95 33.34 32.76 33.10	2800 mm, the W1, global [mm] 20.36 22.31 21.98 21.70 20.10 20.36 23.34 17.12 21.54 19.33 18.49 23.10 19.64	hree dowels, W _{2, global} [mm] 30.54 33.78 32.66 32.06 30.66 30.94 34.38 25.74 29.56 29.47 28.93 33.52 29.54	two boards per EJeff, global [Nmm ²] 1.89E+11 1.60E+11 1.75E+11 1.71E+11 1.70E+11 1.70E+11 1.89E+11 2.42E+11 1.86E+11 1.69E+11 1.64E+11 1.85E+11	r layer K _{ser} [N/mm] 3196 1881 2536 2405 2371 3243 4564 2715 6116 3104 2382 2147 3120
Configura h [mm] 461.0 463.3 464.0 464.7 465.7 464.3 461.7 465.7 463.3 461.7 463.3 461.7 463.3 461.3 464.3 461.3 461.3 462.3	ation 350 x 4 b [mm] 344.7 342.3 343.0 340.0 339.7 341.7 341.0 340.7 338.3 340.7 338.3 340.7 337.0 337.7 339.3 338.3	50 mm, Supp F1 [kN] 24.02 23.56 22.30 23.14 22.60 24.40 29.56 19.12 22.66 23.35 22.22 21.90 22.06 23.36	orts distance F2 [kN] 36.06 35.30 33.45 34.58 33.92 36.58 44.46 28.68 34.06 34.95 33.34 32.76 33.10 35.00	2800 mm, ti W _{1, global} [mm] 20.36 22.31 21.98 21.70 20.10 20.36 23.34 17.12 21.54 19.33 18.49 23.10 19.64 19.96	Immedia W2, global [mm] 30.54 33.78 32.66 32.06 30.64 30.94 34.38 25.74 29.56 29.47 28.93 33.52 29.54 30.43	two boards per EJeff, global [Nmm ²] 1.89E+11 1.60E+11 1.75E+11 1.71E+11 1.70E+11 1.89E+11 2.15E+11 1.78E+11 2.42E+11 1.86E+11 1.69E+11 1.85E+11 1.80E+11 1.80E+11	er layer K _{ser} [N/mm] 3196 1881 2536 2405 2371 3243 4564 2715 6116 3104 2382 2147 3120 2874
Configura h [mm] 461.0 463.3 464.0 464.7 465.7 464.3 461.7 465.7 463.3 461.7 463.3 461.7 463.3 465.7 463.3 465.7 463.3 465.7 463.3 465.7 463.3 465.7 463.3 465.7	ation 350 x 4 b [mm] 344.7 342.3 343.0 340.0 339.7 341.7 341.0 340.7 338.3 340.7 338.3 340.7 337.0 337.0 337.7 339.3 338.3 338.3 338.3	50 mm, Supp F1 [kN] 24.02 23.56 22.30 23.14 22.60 24.40 29.56 19.12 22.66 23.35 22.22 21.90 22.06 23.36 22.36	orts distance F2 [kN] 36.06 35.30 33.45 34.58 33.92 36.58 44.46 28.68 34.06 34.95 33.34 32.76 33.10 35.00 33.50	2800 mm, ti W _{1, global} [mm] 20.36 22.31 21.98 21.70 20.10 20.36 23.34 17.12 21.54 19.33 18.49 23.10 19.64 19.96 21.20	Immedia W2, global [mm] 30.54 33.78 32.66 32.06 30.64 30.94 34.38 25.74 29.56 29.47 28.93 33.52 29.54 30.43 32.19	two boards per EJeff, global [Nmm²] 1.89E+11 1.60E+11 1.75E+11 1.71E+11 1.70E+11 1.70E+11 1.789E+11 2.15E+11 1.78E+11 2.42E+11 1.69E+11 1.69E+11 1.69E+11 1.64E+11 1.80E+11 1.80E+11 1.80E+11 1.63E+11	r layer K _{ser} [N/mm] 3196 1881 2536 2405 2371 3243 4564 2715 6116 3104 2382 2147 3120 2874 2063

Table 6: Shear (contribution of hardwood dowels), tests results

The calculated values of the slip modulus K_{ser} have to be considered as an equivalent measure of the stiffness of the connection between the layers of the cross-section that may include the contribution of friction and other geometry-correlated factors.

No failure of the dowels has been reached and, consequently, it is not possible to obtain a reliable value of their strength in shear.

Proposal for the requirement in the ETA

With reference to the specific tested configurations, the following overall value of the slip modulus K_{ser} of the hardwood dowels may be assumed equal to K_{ser} = 2900 N/mm.

2.2.2. Shear walls (EAD 130323-00-0304 §1.2.4)

Racking strength and stiffness tests for timber shear walls according to EN 594:2011 have been performed on walls made of "Leneco Vollholzelement" parallel to each other and jointed by means of horizontal or inclined hardwood dowels 20 mm diameter. Further specifications on the materials and fixing of the tested walls may be found in the following Test Reports:

- No. 43/01/2018 "Tests for the determination of mechanical properties of n° 4 only-wood wall element Leneco Vollholzelement", CNR Ivalsa, Istituto per la Valorizzazione del Legno e delle Specie Arboree, San Michele (TN), 08/03/2019
- No. 31/03/2018 "Tests for the determination of mechanical properties of n° 4 only-wood wall element "Leneco Vollholzelement", CNR Ivalsa, Istituto per la Valorizzazione del Legno e delle Specie Arboree, San Michele (TN), 06/03/2019

Together with the racking load, a vertical load of 20 kN/m was applied.

Four geometrical configurations were tested:

- 2 samples with thickness 135 mm, width 2400 mm and height of 2430 mm, with horizontal dowels;
- 2 samples with thickness 135 mm, width 2400 mm and height of 2430 mm, with inclined dowels;
- 2 samples with thickness 340 mm, width 2400 mm and height of 2430 mm, with horizontal dowels;
- 2 samples with thickness 340 mm, width 2400 mm and height of 2430 mm, with inclined dowels.

The procedure and the equation of EN 594:2011 for the determination of the racking stiffness has been applied.

$$R = \frac{F_4 - F_2}{v_4 - v_2}$$

The results regarding stiffness are given in Tables 7 and 8. The following values are specified:

- F_i = Racking load equal to 0.2 and 0.4 of the maximum load at failure, in kN
- v_i = Deformation corresponding to F_i , in mm
- *R* = Racking stiffness of the panel, in N/mm

Configuration 135 x 2400 mm x 2430 mm, horizontal dowels							
F ₂	F2 F4 V2 V4 F						
[kN]	[kN]	[mm]	[mm]	[N/mm]			
5.72	11.44	0.14	7.67	760			
6.01	12.02	0.59	4.06	1730			
	Sample mean value	R [N/mm]	1245				
	Configuration 135	x 2400 mm x 2430 mr	m, inclined dowels				
F ₂	F4	V 2	V4	R			
[kN]	[kN]	[mm]	[mm]	[N/mm]			
9.01	18.02	1.64	17.58	565			
9.12	18.24	0.71	12.00	808			
Sample mean value R [N/mm] 687							

Table 7 - Shear walls, thickness 135 mm, stiffness tests results

Configuration 340 x 2400 mm x 2430 mm, horizontal dowels							
F ₂	F2 F4 V2 V4 R						
[kN]	[kN]	[mm]	[mm]	[N/mm]			
10.46	20.91	0.84	5.54	2222			
11.66	23.31	0.39	3.68	3539			
	Sample mean value R [N/mm] 2881						
	Configuration 340	x 2400 mm x 2430 mm	n, inclined dowels				
F ₂	F4	V 2	V 4	R			
[kN]	[kN]	[mm]	[mm]	[N/mm]			
10.01	20.02	0.68	4.69	2495			
10.21	20.42	1.21	6.28	2015			
	Sample mean value R [N/mm] 2255						

Table 8: Shear walls, thickness 340 mm, stiffness tests results

From the racking stiffness calculated above it is possible to define a value of shear stiffness per meter of wall length as follows.

$$(GA)_{ef} = \frac{F_h}{\gamma} = \frac{F_h \cdot h}{\delta} = R \cdot h$$

Where:

(GA) _{ef}	is the shear stiffness of the wall;
R	is the racking stiffness;
Ι	is the length of the wall;
h	is the height of the wall;
γ	is the shear strain;
δ	is the horizont al displacement.

Proposal for the requirement in the ETA

With reference to the specific tested configurations and according to the mean value of the racking stiffness defined above, the following effective shear stiffness value per meter of wall length may be assumed.

Shear stiffness of the wall element, (GA) _{ef} [N/m]				
Wall thickness [mm]	Horizontal dowels	Inclined dowels		
135	1200·10 ³	650·10 ³		
340	2800·10 ³	2200·10 ³		

The racking force has been increased until F_{max} is reached, where F_{max} is either the racking load at failure or the racking load that generates a deformation of 100 mm, whichever occurs first.

The results regarding strength are given in Table 9. The following values are specified:

- $v_{h,t}$ = Horizontal deformation at the top of the panel, in mm
- $v_{h,b}$ = Horizontal deformation at the base of the panel, in mm
- v_v = Uplift of the panel, in mm
- *F* = Racking strength of the panel, in kN

Configuration 135 x 2400 mm x 2430 mm, horizontal dowels				
V _{h,t}	V _{h,b}		F	
[mm]	[mm]		[kN]	
100.03	0.54		28.60	
100.22	0.19		30.30	
Sample mean value (Log-	normal dist.)	ÿ [kN]	29.32	
Minimum valu	Ie	F,min [kN]	28.60	
Configuratio	on 135 x 2400 mm x 243	30 mm, inclir	ned dowels	
Vh,t	Vh,b		F	
[mm]	[mm]		[kN]	
99.90	1.47		45.06	
100.63	2.57		45.60	
Sample mean value (Log-	-normal dist.)	ӯ [kN]	45.33	
Minimum valu	Ie	F,min [kN]	45.06	
Configuration	n 340 x 2400 mm x 2430) mm, horizo	ontal dowels	
Vh,t	Vh,b		F	
[mm]	[mm]		[kN]	
97.93	2.16		52.28	
100.04	1.81		58.28	
Sample mean value (Log-	-normal dist.)	ӯ [kN]	55.20	
Minimum valu	16	F, _{min} [kN]	52.28	
Configuratio	on 340 x 2400 mm x 243	80 mm, inclir	ned dowels	
Vh,t	Vh,b		F	
[mm]	[mm]		[kN]	
99.69	1.55		50.06	
99.89	1.51		51.06	
Sample mean value (Log-	normal dist.)	ӯ [kN]	50.06	
Minimum valu	Minimum value F,min [k			

Table 9: Shear walls, strength test results

Proposal for the requirement in the ETA

With reference to the specific tested configurations, the following characteristic load bearing capacity under horizontal loads per m wall length may be assumed.

Load bearing capacity for horizontal loads of the wall element, $F_{H,Rk}$ [kN/m]					
Wall thickness [mm] Horizontal dowels Inclined dowels					
135	28	45			
340	50	50			

3. Product characteristics of the "Leneco Vollholzelement"

BWR ¹⁾	Essential Characteristic	Assessment method	Level / Class / Description			
1	Mechanical resistance and stability					
	. Load bearing capacity and stiffness regarding mechanical actions perpendicular to the Leneco Vollholzelement"					
	Modulus of elasticity		Continuous elements		Non- continuous elements	
			h = 130 mm	h = 200 mm	h = 200 mm	
	- parallel to the grain of the boards $E_{0,mean}$	EAD 130323-00- 0304 1.1.2 I _{gross}	8300 MPa ²⁾	6500 MPa ²⁾	6500 MPa	
	Bending strength		Continuous elements		Non- continuous elements	
			h = 130 mm	h = 200 mm	h = 200 mm	
	- parallel to the grain of the boards $f_{m,k}$	EAD 130323-00- 0304 1.1.2 <i>W_{gross}</i>	16.5 MPa ^{2,3,4)}	15.5 MPa ^{2,3,4)}	14.5 MPa ^{3,4)}	
	Shear strength					
	- parallel to the grain of the boards $f_{v,090,k}$	EAD 130323-00- 0304 1.1.4 <i>A_{gross}</i>	1.2 MPa ⁵⁾			

Table 10: Product characteristics of the "Leneco Vollholzelement"

- 1) BWR: Basic Work Requirements
- 2) linear interpolation between 130 mm \leq h \leq 200 mm may be applied
- 3) k_h (3.2(3) EN 1955-1-1) shall be always taken equal to 1
- 4) k_{sys} (6.6 EN 1955-1-1) shall be always taken equal to 1
- 5) k_{cr} for solid wood (6.1.7(2) EN 1995-1-1) shall be always taken equal to 1

BWR ¹⁾	Essential Characteristic	Assessment method	Level / Class / Description			
1	1Mechanical resistance and stability2. Load bearing capacity and stiffness regarding mechanical actions in plane of the "Leneco Vollholzelement"					
			Horizonta	al dowels	Inclined	dowels
	Racking stiffness (per meter of wall length)		Thickness	Thickness	Thickness	Thickness
			135 mm	340 mm	135 mm	340 mm
	- (GA) _{ef}	EAD 130323-00-0304 1.2.4	1200 · 10 ³ N/m ²⁾	2800 · 10 ³ N/m ²⁾	650 · 10 ³ N/m ²⁾	2200 · 10 ³ N/m ²⁾
	Decking strongth		Horizonta	al dowels	Inclined	dowels
	(per meter of wall length)		Thickness	Thickness	Thickness	Thickness
			135 mm	340 mm	135 mm	340 mm
	- F _{H,Rk}	EAD 130323-00-0304 1.2.4	28 kN/m ²⁾	50 kN/m ²⁾	45 kN/m ²⁾	50 kN/m ²⁾

Table 11: Product characteristics of the "Leneco Vollholzelement"

- 1) BWR: Basic Work Requirements
- 2) According to the tested configurations

Figure 1 - Tested wall configurations, thickness 135 mm

Figure 2 - Tested wall configurations, thickness 340 mm

4. Summary

This expert report assesses the load-carrying capacity of "Leneco Vollholzelement" (prefabricated softwood element joined with hardwood dowels) with a view to a European Technical Assessment on the basis of EAD 130323-00-0304 "Prüfprogramm für "Leneco Vollholzelement" der Firma LenEco GmbH, Vorgefertigte Holzbauelemente - Elemente aus gefrästen Nadelholzelementen für tragende Bauteile in Gebäuden".

In this expert report test results from CNR Ivalsa, Istituto per la Valorizzazione del Legno e delle Specie Arboree, were used to assess the load-carrying-capacity as well as the stiffness of "Leneco Vollholzelement".

Trento, 18/04/2019 Dr. Eng. Mauro Andreolli

Man Andlh